Molecular identification of *Fusarium* spp causing crown rot and head blight on winter wheat in Iraq

Oadi N. Matny^{1*}, Sukumar Chakraborty², Friday Obanar² and Rakib A. AL-Ani¹

¹University of Baghdad, College of Agriculture, Department of Plant Protection, Iraq, Australia, ²Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia

Oadi N. Matny, Sukumar Chakraborty, Friday Obanar and Rakib A. AL-Ani (2012) Molecular identification of *Fusarium* spp causing crown rot and head blight on winter wheat in Iraq. Journal of Agricultural Technology 8(5): 1677-1690.

The study was carried out to characterize Fusarium isolates associated with crown rot and head blight on wheat by morphological and molecular techniques. The molecular characterization was achieved through sequencing translation elongation factor-1 alpha gene (α TEF gene) and RNA polymerase II gene (RPB2) and confirm by GenBank database BLAST. Result showed that among 21 pathogenic isolates obtained, 4 isolate were *Fusarium proliferatum*, 15 of *F. verticelloides*, one of each of *F. solani* and *F. culmorum*. It was found that all the isolates exhibited symptoms of crown rot disease on wheat seedling ranging from faint lesion on sheath outer sheath leaves to severe necrosis on all sheath leaves. The more severe isolate was of *F. culmorum* with severity index 0.7. While the others showed disease index ranging from 0.2 to 0.4. Six of 21 isolates only showed Head blight on spike, 2 of *F. proliferatum*, three of *F. verticelloides* with infection area of 5, 6, 6, 6, 6% and the more severe one of *F. culmorum* with infection area 100% respectively. ELISA test revealed that all 21 isolate of *Fusarium* produced DON toxin on wheat straw at concentration between 0.5-1.9 mg/Kg. The higher DON toxin producer was of *F. culmorum* at 3.8 mg/kg.

Key word: Wheat, Fusarium spp., DON, crown rot

Introduction

Crown rot on wheat caused by *Fusarium culmorum* and *F. pseudograminearum*, is of global significance disease and becoming epidemics in recent years in Europe, USA, Canada, China and South America causing heavy losses in yield and grain quality (McMullen *et al.*, 1997; Goswami and Kistler, 2004). Crown rot is considered as the second most economically devastating disease on wheat in Australia, where it is chronic, covering most of

^{*}Corresponding author: Oadi N. Matny; e-mail:Oadi77@yahoo.com

wheat cultivation area and causing annual losses up to \$ 56 Australian million dollars (Brennan and Murray, 1998). It was reported that the can reach to 89% in individual crops (Klein *et al.*, 1985). Two billion \$US in wheat production were lost in the last decade in USA by this disease (Dubin *et al.*, 1997), and 20 -100% losses occurred during 1999 and 2000 in New south Wales (Manning *et al.*, 2000).

The *Fusarium spp* predominantly found associated with Fusarium head blight (FHB) in wheat and other small-grain cereals in Europe are *F. graminearum*, *F. avenaceum* and *F. culmorum* (Bottalico and Giancarlo, 2002). It has been reported also that *F. verticillioides* and *F. proliferatum*, the most common fungi associated with maize had the ability to attack wheat seedling and caused crown and root rot disease with the capacity to produce fumonisins toxin (Chulze *et al.*, 1996; Al-Mousa, 2006).

The most characteristic symptoms of crown rot on wheat appeared at the base of plants (crown, lower leaf sheath and tillers) at maturity as brown discoloration and under moist condition sporodochia are formed on infected tissue as pink patches. These symptoms are associated with stunting, reduced tellering and empty heads. Head blight affects flowering spike giving bleached appearance of the spike.

Several previous studies reported that these fungi produce DON toxin in susceptible varieties of wheat (Ansari *et al.*, 2007; Lemmens *et al.*, 2005; Menke-Milczarek and Zimny, 1991). This mycotoxin was found to facilitate the development of Fusarium head blight and crown rot disease (Walter and Doohan, 2011). In addition DON toxin reported to cause damage in cell membrane through released Na and K ions (Cossette and Miller, 1995). DON mycotoxin was found to inhibit seed germination, root and shoot growth, protein and callus formation (Ansari *et al.*, 2007; Lemmens *et al.*, 2005; Rocha *et al.*, 2005; Miller and Ewen, 1997).

Symptoms of stunting, browning at the base of wheat plant, reduction in tillers number associated with spike bleaching suspected to be of crown rot and head blight in wheat fields were observed. The study was conducted to characterizes the causal agents of these symptoms at molecular level and testing their capacity to produce mycotoxin.

Materials and methods

Sample collection and Fusarium spp isolation

Samples of wheat and corn plants showing symptom characteristic of Fusarium infection and of corn grains were collected from 5 different locations in Iraq in 2007-2008 and 2008-2009 seasons. Root and stem pieces (1-2 cm)

and corn grains were surface sterilized with 1% sodium hypochloride and placed on potato dextrose agar (PDA) in petri plates of 9 cm dim (4 pieces/plate). The plates were incubated at $25\pm2^{\circ}$ C for 5 day, and the *Fusarium* spp were morphologically identified and purified by single spore technique for molecular identification.

Pathogenicity test

The pathogenicity of *Fusarium* isolates were tested for crown rot (CR) and head blight (HB) disease on wheat seedlings under greenhouse conditions. Disc of 1cm dim from 10 days old Fusarium culture on PDA were mixed with sterile soil and peat moss (1:1 v:v) in pots of 5×10 cm (3 discs/pots). The pots were covered with polyethylene bags for 2 days. The pots were sown with surface sterilized wheat seeds and watering with distilled water. Three seedling were let grown in each pots and crown rot was assessed after 35 days. The proportion of stem discoloration to seedling height and the number of leaf sheath layers showing necrosis were determined and disease severity was calculated according to the equation:

Crown rot severity index = (length of stem discoloration/seedling height) \times (number of leaf sheath layers with necrosis)

For FHB pathogenicity, three wheat seedling in pots, after spike formation, were sprayed with Fusarium spore suspension, (prepared by adding 100 ml distilled water to 7 day old Fusarium culture on PDA) (0.5 ml/spike). The treated spikes were covered with polyethylene bags and the disease symptoms were evaluated after 7-10 days. The disease severity was recorded as percentage of infected spike. The *Fusarium* spp isolates showing high aggressiveness for FHB and CR were maintained on sterilized sand for molecular identification. The molecular identification protocols were carried out in CSIRO, Plant Industry, Queensland –Brisbane.

DNA Extraction

Twenty-one isolates that given high aggressiveness were choosen. The Fusarium isolates were grown in quarantine room on PDA media for 5 days at $25 \pm 2^{\circ}$ C. The mycelium from each isolate was collected in eppendrofe tube. The mycelium was lyophilized (freeze-dry) in 2 ml screw cryo-tubes with holes in the caps, then 5mm ball bearing was added to each tube, and the lids were replaced with new one. The tube was shaken in retsch MM300 shaker at frequency of 25 for 3 min, and centrifuged at 3000 rpm in microcentrifuge for 3 1679

min. Two hundred μ L of extraction buffer I (20 mL 1M Tris, 5mL NaCl, 5mL 0.5M EDTA, 70mL MilliQ water) was added to each tube, mixed by vortex mixer, and centrifuged at 2000 rpm for 2 min . Ninety μ L of supernatant was added to 10 μ L of extraction buffer II (5% sodium dodecy sulphate (SDS) in MilliQ water) and mixed by pipetting up and down. The tubes were incubated at 65 °C for 1 hour with tapping to mix after each 30 min of incubation, and centrifuged at 3500 rpm for 10 min. Forty μ L of supernatant was added to 100 μ L of absolute ethanol, and centrifuged at 2000 rpm for 10 min. The DNA precipitate was air dried, and dissolved with 100 μ LMilliQ water at 4 °C overnight. The tubes were centrifuged at 2000 rpm for 5 min and the supernatant was kept at 4 °C for PCR protocol.

The DNA cleaned up using UltraCleanTMGelspinTM purification kit from Mo Bio Laboratories Inc. Gel-Bind was added to DNA solution, mix well, and the mixture was passed through spin filter by centrifugation at 10000 xg for 10 seconds. The filtrate discarded, 300 μ l of Gel-Wash buffers was added to filter and centrifuged at 10000 xg for 10 sec. The last step was repeated and the filter was carefully transferred to 2 ml clean tube. Fifty μ l of elution buffer was added directly onto the center of the filter and centrifuged at 10000 xg for 30 sec. The filtrate containing DNA is ready to use for PCR protocol.

PCR Assays

The concentration of DNA was measured by spectrophotometer model ND-1000 Nano Drop and adjusted to 5 ng/µl. PCR was carried out using translation elongation factor-1 alpha gene (aTEF gene) EF1 ⁵'GTGGGGCATTTACCCCGCC³', EF2⁻⁵'ACGAACCCTTACCCACCTC (O'Donnell et al., 2000), and RNA polymerase II gene (RPB2) 7cR (5 -CCCATRGCTTGYTTRCCCAT) and the primers 7cF (5_-ATGGG YAARC AAGCYATGGG). PCR reaction mixture for TEF gene consisted of 12.8 µl milliQ H₂O, 2.5 μ l 10x buffer, 2.5 μ l MgCl2, 0.5 μ l dNTP mix(10mM each), 0.8 µl forward primer EF1 (10mM), 0.8 µl reveres primer EF2 (10mM), 0.1 µl Taq (Biotech) and 5 µl DNA sample. All preparation work was in ice bath. Cycling parameter was initial denaturation of 95 °C for 75 s, denaturation 95 C for 15 s, annealing 53 C for 30 s, pimer extension 72 C for 30 s (38 cycles), final extension 72 °C for 30 s and hold at 10 °C.

The mixture for RPB2 reaction consisted of 13.6 μ l milliQ H₂O, 2.5 μ l 10x buffer, 2.5 μ l MgCl₂, 0.5 μ l dNTP mix(10mM each), 0.4 μ l forward primer 5F2 (10mM), 0.4 μ l reveres primer 7CR (10mM), 0.1 μ l Taq (Biotech) and 5 μ l DNA sample. Cycling parameter was initial denaturation 94 °C for 90 sec, denaturation 94 °C for 30 sec, annealing 55 °C for 90 sec, pimer extension = 68 °C for 2 min (40 cycles), final extension= 68 °C for 5 min and hold at 10 °C.

The reaction was carried out by Gene Amp PCR System 9700, AB Biosystems.

Preparation of Agarose gel 1.5 %

The PCR product was analyzed by electrophoresis in 1.5% agrarose gel prepared in ATM buffer 1X which 57.1 ml glacial acetic acid, 242g Tris base, 200 ml of 0.5 M EDTA pH 8.0 in 1L MilliQ water (50X ATE) and placed in microwave in mid-high for 4 min. Ten μ l of red gel stain was added to gel at 45 °C and poured in gel container after inserting the comb. The gel was maintained 20 min at room temperature for solidification.

Sequencing of PCR products

The PCR reactions were cleaned up by using UltraCleanTM PCR Clean-Up Kit from MO BIO Laboratories, Inc. this kit designed to purify PCR products directly from a PCR reaction. Five volumes of SpinBind were added to the PCR reaction and mix well. The PCR/SpinBind mixture was transferred to a spin filter unit, and centrifuged at 13,000 rpm for 10-30 seconds. The liquid was discarded and spin filter was maintained in the same tube. Three hundred μ l of SpinClean buffer was added to the filter and the mixture was centrifuged at 10,000 xg for 10-30 seconds. The process was repeated and the Spin filter was transferred into a clean 2 ml tubes. Fifty μ l of Elution Buffer (10 mMTris) solution or sterile water was added directly onto the center of the white spin filter. The mixture was centrifuged at 10,000 xg for 30-60 seconds. The spin filter basket was removed out and DNA in the filtrate was stored at -20°C for sequencing reaction.

Translation elongation factor-1 alpha gene (α TEF gene) and RNA polymerase II gene (RPB2) were sequenced for Iraqi isolates. The DNA concentration was measured by spectrophotometer model ND-1000 Nano Drop. The reaction mix was prepared by adding 13 µl MilliQ H₂O, 3.5 µl 5X buffer, 0.5 µl primer EF1 or EF2 (prepared separately), 1.0 µl BDT and 2 µl DNA samples. Cycling parameter were 96 °C for 2 min 1 cycle, (96 °C for 10 secs, 50 °C for 5 sec, 60 °C for 4 mins) 30 cycles and final 4 °C hold. PCR product was cleaned up using Agencourt CleanSEQ kit, Agencourt Bioscience Corporation. Sixty two µl of 85% ethanol was to PCR product, mix well by pipetting for 7 times in cleaning PCR plate. The pleat was place on SPRIPlate 96R for 3 min to separate beads. The clear phase was discarded and 100 µl of 85% ethanol was added and let for 30 sec at room temperature. The ethanol was aspirated out and the pleat air dried for 10 min at room temperature. Forty µl MilliQ water was added to the pleat and maintained at room temperature for 5 min.

The pleat was placed on SPRIPlate 96R for 3 min to separate beads. The clear phase was transferred into new clean plate for loading on the detector and send to sequencing.

DON toxin production

Ten gram of sterile wheat straw in 9 cm dim Petri dish was inoculated with a disc of 1 cm dim of 7 days *Fusarium* isolate culture on PDA media, 3 Petri dishes for each isolate, and incubated in 25 \pm 2 °C for 21 days. The cultures were dried and grounded using coffee grinder. The powder was conserved at 4°C.

DON toxin Extraction and detection

DON toxin was extracted by using Accelerator Solvent Machine ACE200. One gram of each samples powder was extracted with 15 ml of Acetonitril:water 85:15. Five hundred μ l of each extract was dried under nitrogen flow in plastic tubes. Fifty five μ l of milliQ water was added to each tube and vortex for few seconds each. The toxin was detected in samples by Beacon Deoxynivalenol ELISA kit Analytical Systems Inc.

Results and discussions

Identificatin of Fusarium spp

Twenty one of 93 isolates of *Fusarium* spp isolated from the different locations of infected wheat plants and corn grains were found highly pathogenic. The isolates were firstly identified based on morphological characteristics and then confirmed by PCR analysis using Translation elongation factor-1 alpha gene (α TEF gene) and RNA polymerase II gene (RPB2) and sequencing the reaction product (Fig 1 and 2). The result of morphological examination together with DNA sequencing according to GenBank database BLAST searching using individual sequences confirmed the identity of all isolates and that belong to *Fusarium* spp Table 1 and Fig 1.

Isolate No.	Species	Source of isolate	Place of isolate
1	Fusarium proliferatum	Maize – crown	Baghdad
2	F. proliferatum	Maize – crown	Baghdad
3	F. verticelloides	Maize – crown	Baghdad
4	F. proliferatum	Maize – crown	Baghdad
5	F. verticelloides	Maize – crown	Baghdad
6	F. verticilloides	Maize – crown	Baghdad
7	F. verticelloides	Maize – crown	Baghdad
8	F. verticelloides	Maize – crown	Baghdad
Ð	F. proliferatum	Maize – crown	Baghdad
10	F. verticilloides	Maize – crown	Al-Anbar
11	F. verticelloides	Maize – crown	Al-Anbar
12	F. verticelloides	Maize – crown	Al-Anbar
13	F. verticelloides	Maize – crown	Al-Anbar
14	F. verticelloides	Maize – crown	Al-Anbar
15	F. verticelloides	Maize seed	Baghdad
16	F. verticelloides	Maize seed	Baghdad
17	F. verticelloides	Maize seed	Baghdad
18	F.solani	Maize seed	Baghdad
19	F. verticelloides	Maize seed	Baghdad
20	F. verticelloides	Maize seed	Babylon
21	F. culmorum	Wheat – crown	Baghdad

Tabl 1. Source and site of isolation for Fusarium spp isolates in Iraq

1 CCOGCCTACC GCTTTGAGCA AGCTGCTCGC CTCTGGCAGT 41 CGACCACTGA TGAGTACTAC CCTGGACGAT GAGCTTATCT 81 GCCATCGTGA TCCTGACCAA GATCTGGCGG GTACATCTT 121 GGAAGACAAT ATGCTGACCAT CGCTTCACAG ACCGGTCACT 161 TGATCTACCA GTGCTGACCAT CGCTTCACAG ACCGGTCACT 161 TGATCTACCA GACGTGGT ATCGACAGC GAACCATCGA 201 GAAGTCCGAG AAGGTTACTC ACTTCCCTT CGATCGCGCG 211 TCCTCTGCCC ACCGATTCA CTTCGCATC GAAACGTGCC 2121 TGCTACCAG TGGGGGCATT ATCACCAGCA CTCGACGCGG 2131 TACATTTTTG GTGGGGCATT ACCCCCACA CCTCGACGCGAT 3161 GGAGGCGTTT TTGCCCTTCC CTGCCACAA CATTCGACAA 411 TAGGAAGCCG CTGACCGG TAAGGCTAC CATTCGACAA 411 TAGGAACCG CTGACAGCTC AAGGCCC AAGGCCTGAC CATCGGCGGGG 521 TATCACCATC GATATTGCTC TCTGGAAGTT CGAGCGTGG 521 CCTGGGTTCT TGACAAGCTC AAGGCCAACGAT TGGTATGTG TCGCTCATAC 601 CCCATCTAT TCCTCATAC TAACAACATCA TTCAGAGCT 612 ACCTCTCCA TACACATCA TTCCTCCATAC TAACAACATCA TTCAGAGGAT	1 AGGAATGTTG GACGTCTAAT CGGCATCTTC AATCTGGAAG 1 TCGACCACTG ATGAGTACTA CCCTGGACGA TGACCTTATC 11 TGGCATCGTG ATGAGTACTA CCCTGGACGA TGACCTTATC 11 TGGCATCGTG ATCCTGACCA AGATCTGGCG GGGTACATCT 121 TGGACACAA TATGCTGACA TCGCTCCACA GACCGGTACATCT 121 TTGATCTACC AGTGCGGTGG TATCGACAG CGAACCATCG 121 TTGATCTACC AGTGCGGTGG TATCGACAG CGAACCATCG 121 GTCCTCTGCC CACCGATTTC ACTTGCGAT CGAACGTGC 221 GTCCTCTGCC CACCGATTTC ACTTGCGAC CACTGCAGCG 221 GTATTTTTT TGGTGGGGCA TTTACCCCGC CACCGAGCG 221 GTATTTTTT TGGTGGGGCA TTACCCCC CACTGCAGCG 221 GTATTTTTT TGGTGGGGCA TTACCCCC CACTGCAGCG 221 GTATTGTC CACGTGTCAA GCACCGCC GGTAGCGT 401 AGCGCATTGT CACGTGGTCA GCACGGTA ACCATTCGAC 401 AGCGCATTGT CTGCAAGCC CACGGTAAGCGT CCTCAAGTA 401 AGCCCTGGTT CTTGCAACGC CACGGGAGCGT GCGTGAGCT 401 AGCCCACTG T GTTGCACCC GCTAAGCGT CACGGGA GCTGGAGCT 401 AGCCCACTA TGGTACACC TCATAGACGC CACGGAGCTTGCAGAGCT 401 AGCCCACTA TGGTACCC CGTAAGCTC CACTGGAGCT 402 GCCCTGGTT CTTGAAAGC CACACGCGAGCGTGAGCTGGAGCT 403 CCCTCGGTC ATCTCCCCA TCGATATTGC TCTCGGAGAGC TGGAGCT <t< th=""></t<>
1 AAAGACTCAC COGTOGAGTA TCAGCTOGCC TCTGGCAGTC 41 GACCACTGAT GAGTACTACC CTTGACGATG AGCTTATCGG 81 CCATCGTAAA CCCGGCCAAG ACCTGGCGGG GGATTTCTCA 121 AAGAAACAT GCTGACATCG CTTCACAGAC CGGTCACTTG 141 GATACCAGT GCGGTGGTAT CGACAAGCGA ACCATCGAGA 121 AAGTACAGAG GGTAGTAC CTTTCACAGAC CGGTCACTG 141 CTTGGCCAT GGATTCCCC CTACGACTCG AAACGTACCC 241 CTTGCCCAT CGATTCCCC CTACGACTCG AAACGTACCC 241 CTTGCCCAT GGTGGGCAT TTACCCCGCC ACTCGAGCGG 341 CGTGTTTCTG GCGCTGCCAA AAATTTTGCG ATACGACCGT 341 CATCGTCACG TGTCAAGCAG TCACCACCG CCACGAGCGG 341 CGTGTTTCTG GCGCTCGCAA TTACCCCGCC ACTCGAGCGG 341 CGTGCTTCTG CCCCTCCCA TTCCACAACC TCCGACAATA 441 GGAAGCCGCT GACCTCGATA GGCGTCCTT CAAGTACGCC 481 TGGGTTCTTG ACAAGCTCAA GGCGGCGT GAGCGTGGTA 3521 TCACCATCGA TATOGCTCTC TGGAAGTTCG AGACTCCTCG 551 CTACTATGTC ACCGTCATTG CTATGTGTC GCTCTTACTC 601 CGTTCTTATT CTCCTATTAC TAACACATCA CATAGACCT 601 CGTGTCTCA	1 GGGGTTGTAG GCGTATCATA CACATCGAAT CTGGAAGTCG 41 ACCACTGTGA GTACTACCC TGACCATCGAG CTTATCGGCC 81 ATCGTTAACC CGGCCAAAAC CTGGCGGGGG ATGTCTCGGA 121 TAGCTATGCT TTGTTGGTCC TGCAGACGG TACCATTGGC GTGGTATCGA 121 TACCATTGCG GTGGTATCGA CCAGCGAACC ATCTGGAATC 121 TGCCCATCGA TTGCCCATCG CCAGCGAACC ATCTGGAATC 121 TGCCCATCGA TTCCCCCTTG TACTCGAAAC GTACCAGGCA 221 TGCCCATCGA ACCCGCTCTC CCACCGATCA ACCGTATTTT 321 TACTGGTGGG GCATTTACCC CGCCACTCGA ACCGTGTTT 321 TACTGGTGAG CAATCACTAA ACCGTATCGCA ACCGTGGTTT 321 TACTGGTGAG CAATCACTAA CCCATCGA ACCGGCGCTTT 321 TACTGGTGAG CAATCACAA ACCTCATCGGA ACCGTGGCTT 321 TACTGGTGAG CAATCACAA ACCTCATCGGA ACCTACCACA 321 TACTGGTGAG CAATCACAA ACCTACCACA ACCGAGGGGTTT 321
3	4
1 CGAGGTCGTA GTGATCTGCA TATTCATGAT TGCGGGTACA 41 GTCAGAGTAT GATCATTGGT ACTTACATTA TCACGCTCGT 81 AAACCCGGCA AGACCTGGCG GGGGATTTCT CAAAGAAAAC 121 ATGCTGACTT CGCTTTCCAG AACGGTCACT TGATCTACCA 161 GTGGGGGGGT ATCCACCAAC CAAACCTCCA AAAATTTCAG 201 AAGGTAATC CCTTTTCCTT TCATCCGGCG TTCTTTGGCC 241 ATCGATTCCC CCTTACGACT CGAAACGTAC COGCTACCCC 281 GCTGGAGCCC AAAAATTTTG CGATACAACC GTAATTTTTT 322 CGGGGGGGGT TTTTACCCCC CCACTCGAAC GTAATTTTTT 361 TGCCTCTCC CATTCACAAC CATCGGAAAC TAGGAAGCCG 401 TGTGTCAAGC AGTCACTAAC CATCGGAAA TAGGAAGCCG 401 CTGGTCAAGC AGTCACTAAC CATCGGAAC TCTGGGTCT	1 TGCCAGCTTC GATGTTTACA AGCAACTTCC TTGAGTAGCG 41 GTGTACTGTT CCACCAGCAT GATGATTGGT ACTTCCATTA 81 TCAGCCATCG TAAACCCGGC CAGAGACTGG GGGGGGATT 121 CTCAAAGAAA ACATGCTGAC ATCGCTTCAC AGACCGTCA 161 CTTGATCTAC CAGTGCGGTG GTATCGACAA GCGAACCATC 201 GAGAAGTTCG AGAAGGTTAG TCACTTTTCC TTCTATCGCG 241 GCTTCTTGC CCATCGATTC CCCCCAGGA 261 ACCCGCTACC CCGCTCGAGC CCAAAAATTT TGCGATACGA 321 CCGTAATTT TTCTGGCGGG GCATTTACCC GGCACCGGA 361 GCGGGGGCTT TCTGCCCCTC CCATTCCAC AACCTCACTG 401 AGCTCATCGT CACGTTCCAC GGTAAGGGTT CCTTCCAGGA 441 AATAGGAAGC CGCTGACCC GGTAAGGGTT CCTTCAAGTA

321	CGGGGGGGGGT	TTTTACCCCC	CCACTCGAGC	GGGGCGTTTC
361	TGCCCTCTCC	CATTCCACAA	CCTCTGTGAG	CTCTGCGTCG
401	TGTGTCAAGC	AGTCACTAAC	CATCCGAAAA	TAGGAAGCCG
441	CTGAGCTCGG	TAAGGGTTCC	TTCAAGTACC	CCTGGGTTCT
481	TGACAAGCTC	AAGGCCGAGC	GTGAGCGTGG	TATCACCATC
521	GATATCGCTC	TCTGGAAGTT	CGACACTCCT	CGCTACTATG
561	TCACCGTCTG	TGGTATGTTG	TCTCTCTTAC	TCCTCTCTAT
601	ATCTOCTATT	ACTAACACAT	CACATACACT	CTCCCGGTCA
641	CCGTGATTTC	CTCGAGAACA	TGATCTGGGG	TACTCTACA

441 AATAGGAAGC CGCTGAGCTC GGTAAGGGTT CCTTCAAGTA 481 CGCCTGGGTT CTTCAACAAGC TCAAGGCCGA GCCTGAGGGT 521 GGTATCACCA TCGATATCGC TCTCTGGAAG TTCGAGGCTC 561 CTCGCTACTA TGTCACCGTC ATTGGTATGT TGTCGCTCTT 681 ACTCCGTTCT ATATCTCCTA TTACTAACAC ATCACATAGA 641 CGCTCCCGGT CACCGTGATT TCATCAAGAA CATGATCACT 681 GGGTACTTCC CCA

1 41 81 121 201 241 221 361 401 441 481 561 601 641 681	GACCACTGAT CATCGTGAT GAAGACAATA GATCTACCAG AAGTTCGAGA AGCTACCAG AGCTACCCGC AATTTTTTG AGCACCCGC AGCAAGCCGC CTGGGTTCTT ATCACCATCG GCTACTATGT TCATCCTACT	CCTGACCAAG TGCTGACATC TGCGGTGGTA AGGTTAGTCA CCGATTTCAC TCGAGACCAA TGGGGCATTT TGCCCTTTCC GTGTCAAGCA TGAGCTCGGT GACAAGCTCA	CTGGACGATG ATCTGGCGGG GCTTCACAGA TCGACAGCG CTTTCCCTTC TTGCGATCG AAATTTTGCG ACCCCGCCAC GCGACTAACC GCGACTAACC GCGACTACC AGGCTCCT AGGCCGAGGG CTGGAAGTTC AACACATCAT	AGCTTATCTG GTACATCTTG CCGGTCACTT AACCATCGAG GATCGCGCGGT AAACGTGCCT ATATGACGGT CTCAATGACG ATTCGACGATG CTCAATGAGC TCAACTACGC GAGCGTGGT GAGACTCCTC CGCTCATACCC TCAGACGCTC	1 41 81 121 201 201 201 201 201 301 301 401 401 401 401 521 561 601 641	ACTGTGAGTA GTGATOGAGA CTATATGCTG CCCAAGGCCG CCCAGAAGGTC GGCCACCGAT CCCGCTGGAA TTTGGTGGGGG GTTTTGGCCG GTCGCGTGGTC CCCGCTGACC TTCTTGACAA CATCGATATT TATGTCACCG	AAGCACCGAC TCGGTAAGGT GCTCAAGGCC GCTCTCTGGA TCATTGGTAT ATACTAACAC	CGATGAGCTT GCGGGGTATG CCTCATCGGG CAGAGAACCA CCTTCAATCG ATTCCAAACG ATTCCAAACG ATTCCAAACG ACTACCTCCAA GACCATCAC GGCCATCAAC GACCGTGAGC GGTGTGGCCTC	ATCTGCCACC TCTTGTAAAA CACTTGATGT TCTCGAATGT CGCGGCTCCTT TGCCTGCTAC ACCGTAATTT CGATGACGCC CGATGACGCC TGACCGCCATT ACAATATGAA AACCCCTGGG GTGGTATCAC TCCTCGCTAC CATACCTCCATC	
				7					8	

1 TGCCATCCAC COTCACAGCA GCTCGOCTCT GGCAGTCCGA 41 CG 41 CCATCGATAA GTACAACCA ATGCTCAACT CCACGCTTTGA 81 GC 81 CATGGCGGGG TAGACTCAAC ATGCAACT GCACGCTTTGA 81 GC 121 TTGACAGACC GGTCACTTGA TCTACCAGTG GCGTGGTATC 121 ATG 161 GACAAGCGAA CCATCGAGAA GTTCGACAGAG GTTGGTCTCA 201 AAC 201 TTTTCCTCGA TCGCGCGCCC TACTTTCCT CGATCCATCA 201 AAC 201 TTTCCTCGA TCGCGCGCCC TACTTTCCT CGATCCATCA 201 AAC 201 TTTCCTCGA TCGCGCGCC TACTTTCCT CGATCATCA 201 AAC 201 TTTCCTCGA TCGCGCGCC TCTATTTCCT CGATCATCA 201 AAC 201 TTCGGTGGGG CTTATACCA CTGGACACAC ACTGTTACC 241 TC 211 TCGGATGCGC CGAATCGTCA CGTGTCTTGTCT GTAAAAATT 281 CG 221 TCGGTGGGG CTATATACCC GCCACTCGA CGTGTCTACA 281 CG 221 TCGGTGGGG CGAATCGTCA CGTGTCAACC AGTTACAAC 361 GCC 361 TCTTTGGGCG CGAATCGTCA CGTGTCAACT AGGCCGAGC 441 AC 411 TCAATCAATAC CCTGGGTTCT GCAGCGCGAGC 441 AC 412	GATTGTOG TOGTATAOGT GGCACGTOGA ATCTGGCAGT GACCACTGA TGAGTACTAC CCTTGATGAT GAGCTTATOG CCATOGTAA ACCOGGCCAG AACCTGGOGG GGCATTTCTG GGAAAACA TGCTGACATG GCTTCACAGA CCGGTCACTT ITCTACCAG TGCGGTGGTA TCGACAAGG AACCATAGAG IGTTOGAGA AGGTTACTCA CTTTTCCTTC TATAGGGCGT ITTGCCCA TCCAGTCCC CCTACGACAC ATAAGGTACC CCTACCCCG CTCAAGCCCA AAAATTTTGC GATACGACCG IGTTTTTTC TGGTGGGGCA TTTACCCCAC CTCACTGAAC GATCACAC GTGCTCACCA ATAACTTACC CTCACTGACG IGCGTTTCT GCCCTCTCCA ATACGTACC IGCGTTCTT GCCCTCCCCA TTCACCACC CTCACTGAAC CACCATCAC GTGCTCAGCA GTCACTAACC GTCCGACAAT IGAAGCCCC TGACCTCCGGT AAGGCTGCTTCAAGGACAC IGGGTTCTT GACAAGCTCA AGGCCGAGGG TGAGCGTGGT CACCATCG ATATOGCTCT CTGGAAGTTCG GGCCTCTTCCA ITACTATGT CACCGTCATT GGTATGTTGT CGCTCTTACT IGTCTATA TCTCCTATTA CTAACACATC ACATAGACGC ICCGGTCAC CGTGATTTCA TCAAGAACAT GATCCGGG
---	--

1	CGAAAAATCA	GCGTGACCTG	CAGTATCCTC	GGGCAGTGCG
41	ACCACTGATG	AGTACTACCC	ACGATGACCT	GATTATCAGC
81	AGTCATCAAC	CCCGCCATAC	GTGGCGGGGT	AATTTTAACT
21	TGAATATCTG	CTGATAAGAT	TGCATAGACC	GGTCACTTGA
61	TCTACCAGTG	CGGTGGTATC	GACAAGCGAA	CCATCGAGAA
01	GTTCGAGAAG	GTTGGTTCCC	ATTCCCCTCG	ATCGCACGCT
41	CTCTACCCTC	CGATCTATCA	GTCGAATCAG	TTTTACGACG
81	ATTGAATATG	TGCCTGTTAC	CCCGCTCGAG	TACAAAATTT
21	TGCGGTTCAA	CCGTAATTCT	TTTGGTGGGG	TTTCAACCCC
61	GCTACTCGGG	TGACAGGCGC	TTGCCCTTCC	CACAAATCCA
01	TGTCTCGCGC	ATCACGTGTC	AACCAGTCAC	TAACCACCCG
41	ACAATAGGAA	GCCGCCGAGC	TCGGTAAGGG	TTCCTTCAAG
81	TACGCCTGGG	TTCTTGACAA	GCTCAAGGCC	GAGCGTGAGC
21	GTGGTATCAC	CATCGATATC	GCCCTCTGGA	AGTTCGAGAC
61	TCCTCGCTAC	TATGTCACCG	TCATTGGTAT	GTTGTCATCA
01	CTTTCACTCA	TTATCTTCTC	ATTCTAACAT	GTGCTTCAGA
41	CGCTCCCGGT	CACCGTGATT	TCATCAAGAA	CATGAGCACG
81	GGGAAACCTC	CC		

121	AAGAAAACAT ACTGATATCG CTTCACAG	AC CGGTCACTTG	121	TCTCAAAGAA	AACGTGCTGT	GCTCGTCCAG	CAGACGGGTC
161	ATCTACCAGT GCGGTGGTAT CGACAAGO	GA ACCATCGAGA	161	AGTTGATCTA	GGGTTGGGGT	GGTATCGACA	GGCGCACCAT
201	AGTTCGAGAA GGTTAGTCAC TTTTCCTT	CT ATCGCGCGTT	201	CTACAATTTG	GATAATGGTA	GTCACTTTTC	CTTCCATCGC
241	CTTTGCCCAT CGATTCCCCC CTACGACT	CG AAACGTACCC	241	GTGTTGTTTG	CCCATCCATC	CCCCCCTACG	ACTOGAAACC
281	GCTACCCCGC TCGAGCCCAA AAATTTTG	CG ATACGACCGT	281	GACCCGCTAC	CCCGCTCGAG	CCCAAAAATT	TTGCGATACG
321	AATTTTTTCT GGTGGGGGCAT TTACCCCG	OC ACTOGAGOGG	321	ACCGTAATTT	TTTGTGGTGG	GGCATTTACC	CCGCCACTCA
361	CGCGTTTCTG CCCTCTCCCA TTCCACAA	CC TCACTGAGCT	361	AGCGGCGCGT	TTCTGCGTTC	TCCCATTCCA	CACCCTCAGT
401	CATCGTCACG TGTCAAGCAG TCACTAAO	CA TCCGACAATA	401	GATTTTAACG	TGTCATGCAC	TGACCACCCA	ACCCATCCAA
441	GGAAGCCGCT GAGCTCGGTA AGGGTTCC	TT CAAGTACGCC	441	CAATACGAAG	CCGCTGAGCT	CGGTTAGGTT	TCCTTAGGGT
481	TGGGTTCTTG ACAAGCTCAA GGCCGAGO	GT GAGCGTGGTA	481	ACGCCTGGTT	TCTTGACAAG	CTOGAGCCGA	GCGTGATTGT
521	TCACCATCGA TATCGCTCTC TGGAAGTT	CG AGACTCCTCG	521	GGTATCAACA	TOGATATCTG	TATCTGGAAG	TTCCAGACTC
561			561	CTCGCTACCA	TGTCACCGTC	GTTGGTATGT	TGTCCCTCTT
601			601	ACTCCATTCT	ATATCTCCAA	TTATCAAAAC	CTCACATCCA
641			641	CGCTCCCTGG	TCACCGTGAT	ATCATCACGA	ACATGATGAC
681		iv niciovoni	681	TAGTACCTCC	AATG		
004			10000				
		15					16
1	TGCCCCTTCC ACTGACGCCT GCATCTCG	CC TCTGGCAGTG	1	CCGAATTACA	TCTGAATTTC	ATCCATCCTC	CTCTGGCAGT
1 41			41			ATCCATCCTC CCTCATCGCG	
1 41 81		AT GAGACTTATC	1 41 81	OGACCACOGA	TAAGTCAAAC		ATCTAGCTTA
	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCCGGCCA AGACCTGG	AT GAGACTTATC CG GGGGATTTCT		CGACCACOGA TCTCGGGTCG	TAAGTCAAAC TGGAACCCCG	CCTCATCGCG	ATCTAGCTTA CGGGCGGGGT
81	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCCGGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT	81	CGACCACCGA TCTCGGGTCG ATTCATCAGT	TAAGTCAAAC TGGAACCCCG CACTTCATGC	OCTCATCGCG OCTGGCATCT	ATCTAGCTTA CGGGCGGGGGT CTACAGACCG
81 121	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCCGGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATCGA	81 121	OGACCACOGA TCTCGGGTCG ATTCATCAGT GTCACTTGAT	TAAGTCAAAC TGGAACCCCG CACTTCATGC CTACCAGTGC	CCTCATCGCG CCTGGCATCT TGACAATCAT	ATCTAGCTTA CGGGCGGGGT CTACAGACCG ACAAGCGAAC
81 121 161	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCCGGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC TGATCTACCA GTCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTAGTC ACTTTTCC	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATCGA TT CTATCGCGCG	81 121 161	CGACCACCGA TCTCGGGTCG ATTCATCAGT GTCACTTGAT CATCGAGAAG	TAAGTCAAAC TGGAACCCCG CACTTCATGC CTACCAGTGC TTCGAGAAGG	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG	ATCTAGCTTA CGGGCGGGGGT CTACAGACCG ACAAGCGAAC CTCCCCCCGAT
81 121 161 201	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCCGGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTACTC ACTGTCC TTCTTTGCCC ATCGATCCC CCCTACGA	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATCGA TT CTATCGCGCG CT CGAAACGTAC	81 121 161 201	CGACCACOGA TCTCGGGTCG ATTCATCAGT GTCACTTGAT CATCGAGAAG CGCGCCTTGC ACGCTCTGCG	TAAGTCAAAC TGGAACCCCG CACTTCATGC CTACCAGTGC TTCGAGAAGG TATTCCACAA CCCGCTTCTC	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGACAT CGAATTCCCT CCGAGTCCCA	ATCTAGCTTA CGGGCGGGGT CTACAGACCG ACAAGCGAAC CTCCCCCGAT CCCTCGCGAT AATTTTTTGC
81 121 161 201 241	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCTA AACCCGGCCA AGACCTGG CAAAGAAAAC ATACTGGATAT GGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTAGTC ACTTTTCC TTCTTTGCCC ATCGATTCCC CCTACGA CCGCTACCCC GCTGAGCCC AAAAATTT	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATCGA TT CTATCGCGCG CT CGAAACGTAC TG CGATACGACC	81 121 161 201 241	CGACCACCGA TCTCGGGTCG ATTCATCAGT GTCACTTGAT CATCGAGAAG CGCGCCTTGC ACGCTCTGCG GGTCCGACCG	TAAGTCAAAC TGGAACCCCG CACTTCATGC CTACCAGTGC TTCGAGAAGG TATTCCACAA CCCGCTTCTC TAATTTTTTT	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGACAT CGAATTCCCT CCGAGTCCCA TGGTGGGGCA	ATCTAGCTTA CGGGCGGGGT CTACAGACCG ACAAGCGAAC CTCCCCCGAT CCCCCCGAT CCCCCGGAT AATTTTTTGC TTTACCCCGC
81 121 161 201 241 281	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCOGGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTAGTC ACTTTTCC TTCTTTGCCC ATCGATTCCC CCCTACCA CCGCTACCCC GCTCGAGCCC AAAAATTT GTAATTTTTT CTGGTGGGCC ATTACCC GGCGCGTTTC TGCCCTCCC CATTCAC	AT GAGACTTATC CG GGGGATTCT AG ACCGGTCACT GC GAACCATCGA CT CTATCGCGCG CT CGAAACGTAC TG CGATACGACC CG CCACTCGACC AA CCTCACTGAG	81 121 161 201 241 281	CGACCACCGA TCTCGGGTCG ATTCATCAGT GTCACTTGAT CATCGAGAAG CGCGCCTTGC ACGCTCTGCG GGTCCGACCG CACTCGGGCG	TAAGTCAAAC TGGAACCCCG CACTTCATGC CTACCAGTGC TTCGAGAAGG TATTCCACAA CCCGCTTCTC TAATTTTTT ACGTTGGACA	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGACAT CGAATTCCCT CCGAGTCCCA TGGTGGGGCA AAGCCCTGAT	ATCTAGCTTA CGGGCGGGGT CTACAGACOG ACAAGCGAAC CTCCCCCGAT CCCTCGCGAT AATTTTTGC TTTACCCCGC CCCTGCACAC
81 121 161 201 241 281 321	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCTA AACCCGCCA AGACCTGG CAAAGAAAAC ATACTGGATAT GGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTAGTC ACTTTTCC TTCTTGCCC ATCGATCCC CCTTACGA CCGCTACCCC GCTCGAGCCC AAAAATTT GTAATTTTTT CTGGTGGGGC ATTTACCO GGCGCGTTC TGCCTCTCC CATTCCAC CTCATCGTCA CGTCTAAGC AGTCACTA	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATCGA TT CTATCGCGCG CT CGAAACGTAC TG CGATACGACC CG CCACTCGAGC AA CCTCACTGAG AC CATCCGACAA	81 121 161 201 241 281 321 361 401	CGACCACCGA TCTCCGGGTCG ATTCATCAGT GTCACTIGAT CATCGAGAAG OGCGCCTTGC ACGCTCTGCG GGTCCGACCG CACTCGGCCG AAAAACACCA	TAAGTCAAAC TGGAACCCCG CACTTCATGC CTACCAGTGC TTCGAGAAGG TATTCCACAA CCCGCTTCTC TAATTTTTTT ACGTTGGACA AACCCTCTTG	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGACAT CGAATTCCCT CCGAGTCCCA TGGTGGGGCA AAGCCCTGAT GCGCGCATCA	ATCTAGCTTA CGGCGGGGT CTACAGACCG ACAAGCGAAC CTCCCCCGAT CCCTCGCGAT AATTTTTTGC TTTACCCCGC CCCTGCACAC TCACGTGGTT
81 121 161 201 241 281 321 361	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCCGGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTACTC ACTTTTCC TTCTTTGCCC ATCGATCCC CCTACGA CCGCTACCC GCTCGAGCCC AAAAATTT GTAATTTTTT CTGGTGGGGC ATTTACCC GGCGCGTTTC TGCCTCTCC CATTCCAC CTCATCGTCA CGTGTCAAGC AGTCACTA	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATCGA TT CTATCGCGCG CT CGAAACGTAC TG CGATACGACC CG CCACTCGAGC AA CCTCACTGAG AC CATCCGACAA CC TTCCAAGTACG	81 121 161 201 241 281 321 361 401 441	CGACCACCGA TCTCGGGTCG ATTCATCAGT GTCACTTGAT CATCCAGAAG OGCGCCTTGC ACGCTCTGCG GGTCCGACCG CACTCGGCG AAAAACACCA CACAACAAAC	TAAGTCAAAC TGGAACOCCG CACTCATGC CTACCAGGC TTCGAGAAGG TATTCCACAA CCCGCTTCTC TAATTTTTT ACGTTGGACA AACCCTCTTG GCTAACCGGT	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGGACAT CGAATTCCCT CCGAGTCCCA AAGCCCTGAT GCGCGCATCA CCAACAATAG	ATCTAGCTTA CGGCCGGGGT CTACACACCG ACAAGCGAAC CTCCCCCGAT CCCTCGCCGAT AATTTTTTGC TTTACCCCGC TTTACCCCGC CCCTGCACAC TCACGTGGTT GAAGCCGCTG
81 121 161 201 241 281 321 361 401	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCCGGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTAGTC ACTTTTCC TTCTTTGCCC ATCGATTCCC CCTACGA CCGCTACCCC GCTCGAGCCC AAAAATTT GTAATTTTTT CTGGTGGGGC ATTTACCC GGCGCGTTTC TGCCTCTCC CATTCCAC CTCATCGTCA CGTGTCAAGC AGTCACTA TAAGAAGCCC CTGACCTCG TAAGGGTT CCTGGGTTCT TGACACCC AAGGCCGA	AT GAGACTTATC CG GGGGATTCT AG ACCGGTCACT GC GAACCATCGA TT CTATCGCGGG CT CGAAACGTAC TG CGATACGACC CG CCACTCGAGC AA CCTCACTGAG AC CATCCGACAA CC TTCAAGTACG GC GTGACGTGG	81 121 161 201 241 321 361 401 441 481	OGACCACOGA TCTCGGGTOG ATTCATCAGT GTCACTIGAT CATCGAGAAG OGGCCTTGC ACGCTCTGCG GGTCCGACCG CACTCGGGCG AAAAACACCA CACAACAAAC AGCTCGGTAA	TAAGTCAAAC TGGAACCCCG CACTTCATGC CTACCAGTGC TTCGAGAAGG TATTCCACAA CCCGCTTCTC TAATTTTTT ACGTTGGACA AACCCTCTTG GGTTACCGGT GGGTTCCTTC	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGACAT CCGAGTCCCA TGGTGGGCA AAGCCCTGAT GCGCGCATCA CCAACAATAG AAGTACGCCT	ATCTAGCTTA CGGGCGGGGT CTACAGACOG ACAAGCGAAC CTCCCCCGAT CCCTCGCGAT CCCTCGCGAT CCCTCGCGC CCCTGCACAC CCCTGCACAC CCACGTGGTT GAAGCCCCTG GGGTCCTTGA
81 121 161 201 241 281 321 361 401 441	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCTA AACCCGCCA AGACCTGG CAAAGAAAC ATACTGGATAT CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTAGTC ACTTTTCC TTCTTTGCC ATCGATTCCC CCTACGA CCGCTACCCC GCTGGAGCC AAAAATTT GTAATTTTTT CTGGTGGGGC ATTTACCC GGCGCGTTC TGCCTCTCC CATTCCAC CTCATCGTCA CGTGTCAAGC TAAGGGTT CCTGGGTCT TGACAAGCTCG AAGGGCGA TATCACCATC GATATCGCTC TCTGGAAG	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATOGA TT CTATCGCGCG CT GGAAACGTAC TG CGATACGACC CG CCACTCGAGC AA CCTCACTGAG AC CATCCGACAA CC TTCAAGTACG GC GTGAGCGTGG TT CGAGACTCCT	81 121 161 201 241 281 321 361 401 441 481 521	CGACCACCGA TCTCGGTCG ATTCATCAGT GTCACTTGAT CATCGAGAAG CGCGCCTTGC ACGCTCGGACG CACTCGGGCG AAAAACACCA ACGTCGACAA CACAACAAAC ACCTCGGTAA	TAAGTCAAAC TGGAACCCOG CACTTCATGC CTACCAGTGC TTCGAGAAGG TATTCCACAA CCCGCTTCTC AGGTTGGACA AACCGTCTTG GCCAACCGTT GGCTACCTCTTG GCCGAGCGTG	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGGCAATCCT CCGAGTCCCA AAGCCCTGAT GCCCGCCATCA CCAACAATAG CCCACCATAG	ATCTAGCTTA CGGCGGGGT CTACAGACG ACAAGCGAAC CTCCCCCGAT CCCTCCGCGAT AATTTTTTCC TTTACCCCGC CCCTGCACAC CCCTGCACAC CCCTGGTGGTT GAAGCCGCTG GGGTCCTTGA CACCATCGAC
81 121 161 201 241 321 361 401 441 481	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCTA AACCCGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTACTC ACTTTTCC TTCTTTGCCC ATCGATCAC CCTTACGA CCGCTACCC GCTCGAGCCC AAAAATTT GTAATTTTTT CTGGTGGGGCC ATTTACCC GGCGGGTTTC TGCCTCTCC CATTCCAC CTCATCGTCA CGTGTCAACG CTCATCGTCA CGTGCACCA TAGGAAGCCG CTGACCTGA TAAGGCTA TATCACCATC GATATCGCTC TCTGGAAG CGCTACTATG TCACCGTCAT TGGTATGT	AT GAGACTTATC CG GGGGATTCT AG ACCGTCACT GC GAACCATCGA TT CTATCGCGCG CT CGAAACGTAC TG CGATACGACC CG CCACTCGAGC AA CCTCACTGAG AC CATCCGACAA CC TTCAAGTACG GC GTGACCGTCG TT CGAGACTCCT	81 121 201 241 321 361 401 441 521 561	CGACCACCGA TCTCGGGTCG GTCACTTGAT CATCCAGAAG CGCGCCTTGC ACGCCCTGCG GGTCCGACCG GGTCCGACCG CACTCGGCCG CACTCGGCCG CACAACAAAC ACGCTCGGTAA CACGCTCAGTAA CAAGCTCAAG ATTGCCCCT	TAAGTCAAAC TGGAACCCOG CACTTCATGC CTACCAGGAC TTCCAGAA CCCCCTTCTC TATTCCACAA CCCCCTTCTC TATTTTTTA ACGTTGACA AACCCTCTTG GCTAACCGGT GGTTCCTTC GCCGAGCGTG GGAACTTCGA	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGGACAT CCGAATCCCT TGGTGGGGCA AAGCCCTGAT GCGCCCCATCA CCAACAATAG AAGTACGCCT AGCGTGGTAT GGCTCCCCGC	ATCTAGCTTA CGGCGGGGT CTACAGACCG ACAAGGCAAC CTCCCCGGAT AATTTITTGC TTTACCCCCG CCTTGCACAC CCCTGCACAC CCCTGCACAC CCCTGCACAC GGGTCCTTGA CACCATCGAC TACTATGTCA
81 121 161 201 241 321 361 401 441 481 521	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCGTA AACCCGGCCA AGACCTGG CAAAGAAAAC ATACTGATAT CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTAGTC ACTTTTCC TTCTTTGCCC ATCGATTCCC CCTACGA CCGCTACCCC CCTCGGCC AAAAATTT GTAATTTTTT CTGGTGGGGC ATTTACCC GGCGCGTTTC TGCCTCTCC CATTCCAC CTCATCGTCA CGTGTCAAGC AGTCACTA TAGGAAGCCG CTGACAAGC AGTCACTA TAGGAAGCCG CTGACAGC AAGGCCGA TATCACCATC GATATCGCTC TCTGGAAG CGCTACTGTC TGCACTGCT TGGTATGT TCCGTTCTAT ATCTCCTATT ACTAACAC	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATCGA TT CTATCGCGCG CT CGAAACGTAC TG CGATACGACC CG CCACTCGAGC AA CCTCACTGAG AC CATCCGACAA CC TTCAAGTACG GC GTGAGCGTGG TT CGAGACTCCT TG TCGCTCTTAC AT CACATAGACG	81 121 161 201 241 321 361 401 441 521 561 601	CGACCACCGA TCTCCGGTCCG ATTCATCAGT GTCACTTGAT CATCGAGAAG CGCGCCTTGC ACGCTCTGCG GGTCCGACCG CACTCGGCCG AAAAACACCA AGCTCGGTAA CAAGCTCAAG ATTGCCCTCT CCGTCATTGG	TAAGTCAAAC TGGAACCCOG CACTTCATGC CACTTCATGC TTCGAGAAGG TATTCACAA CCCCCTTTCC TAATTTTTT ACGTTGGACA AACCCTCTTG GCTAACCGGT GGGTTCCTTC GCCAAGCGT GGGATTCGA TATGTTCCTG	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTATCG TTGGTGGCAATCG TGGTGGGGCAA AGCCCTCAT GCGCGCATCA AGCACCGCATCA AGCACCGCTGGTAT GACTCCCCGC GCCCCCCGGT	ATCTAGCTTA CGGCGGGGT CTACAGACOG ACAAGOGAAC CTCCCCCGAT CCCTCGCGAT AATTITTGC TTTACCCCGC CCTGCACAC CCCTGCACAC CCCTGCACAC GGGTCCTTGA CACCATCGAC TACTATGCAC
81 121 161 201 241 321 361 401 481 521 561	CGACCACTGA TGAGTACTAC CCTTGACG GGCCATCTA AACCCGCCA AGACCTGG CAAAGAAAC ATACTGGATA CGCTTCAC TGATCTACCA GTGCGGTGGT ATCGACAA GAAGTTCGAG AAGGTTAGTC ACTTTTCC TTCTTTGCC ATCGATTCCC CCTCACGA CCGCTACCCC GCTCGAGCCC AAAAATTT GTAATTTTT CTGGTGGGGC ATTTACCC GGCGCGTTTC TGCCCTCTCC CATTCCAC CTCATCGTCA CGTGTCAAGG AGTCACTA TAGGAAGCCG CTGACCTCG TAAGGGTT TATCACCATC GATATCGCTC TCTGGAAG CGCTCATATG TCACCAGCTC TAGTACTA TOCGTTCTA ATCTCCTATT ACTAACAC	AT GAGACTTATC CG GGGGATTTCT AG ACCGGTCACT GC GAACCATCGA TT CTATCGCGCG CT CGAAACGTAC TG CGATACGACC CG CCACTCGAGC AA CCTCACTGAG AC CATCCGACAA CC TTCAAGTACG GC GTGAGCGTGG TT CGAGACTCCT TG TCGCTCTTAC AT CACATAGACG	81 121 201 241 321 361 401 441 521 561	CGACCACCGA TCTCGGGTCG ATTCATCAGT GTCACTTGAT CATCCAGAAG GGCGCCTTGC ACGCTCTGCG GGTCCGACGG AAAAACACCA CACCAACAAAC AGCTCGGTAA AGCTCGGTAA AGCTCGCATTGG CCGCTCATTGG CCGCCATTGG	TAAGTCAAAC TGGAACCCOG CACTTCATGC CACTTCATGC TTCGAGAAGG TATTCACAA CCCCCTTTCC TAATTTTTT ACGTTGGACA AACCCTCTTG GCTAACCGGT GGGTTCCTTC GCCAAGCGT GGGATTCGA TATGTTCCTG	CCTCATCGCG CCTGGCATCT TGACAATCAT GGTGGTACCG TGGTGGCATCG CGAATCCCT CCGAGTCCCA TGGTGGGCA AAGCCTGGTCA CCAACAATAG AAGCATGGTAT GACTCOCCGC TCACCTCTGT	ATCTAGCTTA CGGCGGGGT CTACAGACOG ACAAGOGAAC CTCCCCCGAT CCCTCGCGAT AATTITTGC TTTACCCCGC CCTGCACAC CCCTGCACAC CCCTGCACAC GGGTCCTTGA CACCATCGAC TACTATGCAC

13

GGGGAAGTTG GGGGGTATCC TACCTTATCC TCTGGCCAGT CGACCACTGT GAGTACTACC TCTTGATCAT GAGGTTATTG

GCCATOGTTC ACCCGGCCAA AACCTGGOGG GGGATTTCTC

AAATAAAACA TGCTGACATC GTCCCGCAGA CCGGTCACTT

GATCTACCAT TGCOGTGGTA TCGACAAGCG AACCATCGAG AAATTOGAGA AGGTAATGCA CTTTTCCTTC TAGCGCGCGA TCTTTGCCCA TCGATTCCCC CCTACGACTC GAAACGTACC

CGCTACCCCG CTCGAGCCCA AAAATTTTGC TATACGACCG TAATTTTTTC TGGTGGGGGCA TTTACCCCTC CACTCCAGCG GCGCGTTTCT GCCCTCTCCC ATTCCACAAC CTCACTGAGC

TCATCGTCAC GTGTCAAGCA TTCACTAACC ATCCGAGAAT

ACGAAGCCGC TGAGCTCGGT AAGGGTTCCT TCAAGTACGC

CGGGGTTCTT GACAAGCTCA AGGCCGAGGG TGAGCGTGGT ATCACCATCG ATATCGCTCT CTGGAAGTTC GAGACTCCTC GCTACTATGT CACCGTCATT GGTATGTTGT CGCTCTTACT

CCGTTCTATA TCTCCTATTA CTAACACATC ACATAGACGC

TCCCGGTCAC CGTGATTTCA TCAAGAACAT GATCATGGGT

1 TGGGGTAGGT CTGTCTAGCA GCAGCTTCCT CTGGCAGTGC 41 GACCACTGAT GAGTACTACC CTTGACGATG AGCTTATCGG 81 CCATCGTAAA CCCGGCCAAG ACCTGGCGGG GGATTTCTCA AAGAAAACAT ACTGATATCG CTTCACAGAC CGGTCACTTG

41

81

241

361

401

441

481

601

641

681 ACCCTTTCCA

681 ACCTTCC

17

18

GGGGAATTCG TTAGTCTAGG TACACGTCGC CTCTGGCCAG TCGACCACTG TGAGTACTAC CTCCTGATCA TGATGTTGCT

GGCCCTCCTA AACCCGGCAA AAAGCTGGGG GGGGATTTCT

CTTGCAAAAC ATATTGATAT CGCTTCACAG ACCGGTCACT TGATCTACCA GTGCGGTGGT ATCGACAAGC GAACCATCGA GAAGTTCCAG AAGGTGATTC CCTTTTCCTT CTATCGCACG TTCTTTGCCC ATCAATTCGC CCCTACTACT CTAAACTTAC

COGCTACCCC GCTGGAGACC AAAAATTTTG GGATACGACC GTAATTTTTT CTGGTGGGGC ATTTACCCCG CCACTCAAGC GGCGCGTTTC TGCCCTCTCC CATTCCACAA CCTCACTGAG

CTCATCGTCA CGTGTCATGC AGGCACTAAC CATCGAACAA

TAAGAAGCCG CTGAGCTCGG TAAGGGTTCC TTCAAGTAGC TAGGGTTCTT GACAAGCTCA AGGCCGAGCG TGAGCGTGGT ATCACCATCG ATATCGCTCT CTGGAAGTTC GAGACTCCTC

GCTACTATGT CACCGTCATT GGTATGTTGT CGCTCTTACT COGTTCTATA TCTOCTATTA CTAACACATC ACATAGACGC TCCCGGTCAC CGTGATTTCA TCAAGAACAT GATCATGGGA

1 GGGGGGGGGG GTGGCTGTGG AGAAATCCTC ATACACTAGC 41 GGAGTAGACC ATTGAGACTC CACCTCTTGA TGATCATGTT 81 ATGGCGCATA GTACACCCGG CCAAGACCTG GCGGGGGATT 121 TCTCAAAGAA AACGTGCTGT GCTCGTCCAG CAGACGGGTC

681 TTCATCAAGA ACATGATCAT GGG

14

1

41

81

161 241

281

361

401

441

481

561

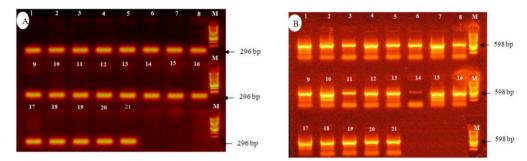
601

641

681 CCTTTCAA

Journal of Agricultural Technology 2012, Vol. 8(5): 1677-1690

1	TCCCCTCGTC	TGCGTACCAC	TGCAGCTTCC	TCTGGAAGTC
41	GACCACTGAT	GAGTACTACC	CTTGACGATG	AGCTTATCGG
81	CCATCGTAAA	CCCGGCCAAG	ACCTGGCGGG	GGATTTCTCA
121	AAGAAAACAT	ACTGATATCG	CTTCACAGAC	CGGTCACTTG
161	ATCTACCAGT	GCGGTGGTAT	CGACAAGCGA	ACCATCGAGA
201	AGTTCGAGAA	GGTTAGTCAC	TTTTCCTTCT	ATCGCGCGTT
241			CTACGACTCG	
281			AAATTTTGCG	
321			TTACCCCGCC	
361			TTCCACAACC	
401			TCACTAACCA	
441			AGGGTTCCTT	
481			GGCCGAGCGT	
521			TGGAAGTTCG	
561	CTACTATGTC		GTATGTTGTC	
601			TAACACATCA	
641	CCCGGTCACC	GTGATTTCAT	CAAGAACATG	ATGCGGGG


1	CAAAAATTAA	CTGTGAATCT	GCAATCTCTC	AATCTGGCAG
41	TCGACCACTG	ATGAGTACTA	CCCTTGACGA	TGAGCTTATC
81	GGCCATCGTA	AACCCGGCCA	AGACCTGGCG	GGGGATTTCT
121	CAAAGAAAAC	ATGCTGACAT	CGCTTCACAG	ACCGGTCACT
161	TGATCTACCA	GTGCGGTGGT	ATCGACAAGC	GAACCATCGA
201	GAAGTTCGAG	AAGGTTAGTC	ACTTTTTCCTT	CTATCGCGCG
241	TTCTTTGCCC	ATCGATTCCC	CCCTACGACT	CGAAACGTAC
281	CCGCTACCCC	GCTCGAGCCC	AAAAATTTTG	CGATACGACC
321	GTAATTTTTT	CTGGTGGGGC	ATTTACCCCG	CCACTCGAGC
361	GGCGCGTTTC	TGCCCTCTCC	CATTCCACAA	CCTCACTGAG
401	CTCATCGTCA	CGTGTCAAGC	ACTCACTAAC	CATCCGACAA
441	TAGGAAGCCG	CTGAGCTCGG	TAAGGGTTCC	TTCAAGTACG
481	CCTGGGTTCT	TGACAAGCTC	AAGGCCGAGC	GTGAGCGTGG
521	TATCACCATC	GATATOGCTC	TCTGGAAGTT	CGAGACTCCT
561	CGCTACTATG	TCACCGTCAT	TGGTATGTTG	TOGCTCTTAC
601		ATCTCCTATT		
641	CTCCCGGTCA	CCGTGATTTC	ATCAAGAACA	TGATCACTGG
681	GCTACCTCCC			

20

1	TGGTCGTTCT	TOGTTAGCTG	CACTTCATCG	GGCCGGCGAC
41	CACTGATGAG	TACCACTGCA	TGCCCAACCC	CAGCCGATAC
.81	TTGGCGGGGT	AGTTTCAAAT	TTCCAATGTG	CTGACATACT
121	TTGATAGACC	GGTCACTTGA	TCTACCAGTG	CGGTGGTATC
161	GACAAGCGAA	CCATCGAGAA	GTTCGAGAAG	GTTGGTCTCA
201	TTTTCCTCGA	TCGCGCGCCC	TTTTCCCTTT	CGAAACATCA
241	TTCGAATCGC	CCTCACACGA	CGACTCGATA	CGCGCCTGTT
281	ACCCCGCTCG	AGGTCAAAAA	TTTTGCGGCT	TTGTCGTAAT
321	TTTTTCTGGTG	GGGCTCATAC	CCCGCCACTC	GAGCGACAGG
361	CGCTTGCCCT	CTTCCCACAA	ACCATTCOCT	AGGCGCGCAC
401	CATCACGTGT	CAATCAGTTA	CTAACCACCT	GTCAATAGGA
441	AGCCGCCGAG	CTCGGTAAGG	GTTCCTTCAA	GTACGCCTGG
481	GTTCTTGACA	AGCTCAAAGC		CGTGGTATCA
521	CCATTGATAT	CGCTCTCTGG	AAGTTCGAGA	CTCCTCGCTA
561	CTATGTCACC	GTCATTGGTA	TGTTGTCACT	ACTGCTGTCA
601	TCACATTCTC	ATACTAACAC	GACTATCAGA	CGCTCCCGGT
641	CACCGTGATT	TCATCAAGAA	CATGATCATG	GG 21
				21

Fig. 1. DNA sequencing for Fusarium isolates for translation elongation factor-1 alpha gene (α TEF gene) and RNA polymerase II gene (RPB2) regent products. 1,2,321 the sequencing of Fusarium isolates as Table 1.

19

Fig. 2.Agarose gel 1.5% photograph showing PCR amplified products for A- α -TEF gene B-RPB2 for *Fusarium* spp isolates, the product prepared for sequencing test. 1, 2, 3.....21= the *Fusarium* spp isolates , M= marker.

Aggressiveness of Fusarium isolates for CR

The pathogenic isolates showed various symptoms of CR on wheat seedlings ranged from faint lesions on outer sheath to intense brown necrosis on all sheath leaves. The more pathogenic isolate with 0.7 severity index was found belong to F. culmorum. Most isolates were belonged to F. verticelloides and shown similar symptoms of CR on wheat seedling with severity index ranging from 0.4-0.5. One isolate of F. verticelloides No.10 was gave 0.2 disease severity. Four isolates of F. proliferatum shown CR symptoms with disease index 0.3-0.4 Table 2.One isolate of F. solani shown CR symptoms with disease severity of 0.4. Several previous studies reported that F. verticelloides, F. solani and F. proliferatum caused CR disease and root rot on wheat seedling (Al-Mousa, 2006; Bottalico and Giancarlo, 2002). Result showed that all the 21 isolates of Fusarium in this study produced DON toxin on wheat straw with concentration ranged between 0.5 - 3.8 mg/kg. A relationship was found between the quantity of toxin produced and the aggressiveness of Fusarium isolates. It was reported that the isolates of high production of DON caused more severe disease symptoms of CR disease (Bottalico and Giancarlo, 2002; Bakan et al., 2012).

Aggressiveness of Fusarium spp for FHB

Two isolates of F. proliferatum and four F. verticelloides from 21 isolate obtained showed FHB symptoms with disease incidence 33.3, 66.6% for F. proliferatum and 66.6, 66.6, 66.6 and 66.6% for F. verticelloides respectively. Variation of aggressiveness between isolates was observed. Three isolates of F. *verticelloides* showed FHB symptoms on wheat spike with infection area of 6.6 and 6% respectively .Two isolate of F. proliferatum showed symptoms with infected area of 5 and 6%. The most aggressive isolate was of that belong to F. *culmorum* which gave higher percentage of disease area (100%) on spike Table 2. A previous study reported that F. culmorum strains is very aggressive in causing CR or FHB disease on wheat through producing high-deoxynivalenol (Bakan et al., 2012). This toxin was considered as fungal virulence factor that facilitates the development of Fusarium head blight (FHB) disease (Walter and Doohan, 2011). Another study shown that treated Durum wheat grain with more than 5 µg/ml DON toxin can caused deletion in DNA sequencing and abnormal chromosomal during meiotic division (Mohammad and Fadl-Allah, 2008).

In this study we demonstrated that several species of *Fusarium* were associated with CR and HB disease on wheat plants. Certain of these species were highly pathogenic and caused severe symptoms on wheat seedlings as

well as had capacity to produce high concentration of DON mycotoxin on wheat straw. The capacity of the isolate to produce DON toxin may be responsible of disease symptoms development. These results indicated the necessity of searching of means to protect wheat plants against *Fusarium spp* and reduced the production of DON in the plants.

Isolate	Species	CR FHB				DON
No.	-	Disease incidence %	Aggressive ness index	Disease incidence %	Infected spike %	toxin μg/g
1	F. proliferatum	100	0.3	33.3	5	0.81
2	F. proliferatum	100	0.4	0	0	1.91
3	F. verticelloides	100	0.4	0	0	1.35
4	F. proliferatum	100	0.5	0	0	0.89
5	F. verticelloides	100	0.4	0	0	0.78
6	F. verticilloides	100	0.4	0	0	1.57
7	F. verticelloides	100	0.4	66.6	6	0.76
8	F. verticelloides	100	0.4	66.6	6	0.83
9	F. proliferatum	100	0.5	66.6	6	1.33
10	F. verticilloides	33.3	0.2	0	0	0.85
11	F. verticelloides	100	0.5	0	0	0.95
12	F. verticelloides	100	0.4	0	0	0.70
13	F. verticelloides	100	0.5	0	0	1.02
14	F. verticelloides	100	0.5	0	0	0.74
15	F. verticelloides	100	0.4	0	0	0.59
16	F. verticelloides	100	0.5	0	0	1.40
17	F. verticelloides	100	0.4	0	0	1.07
18	F.solani	100	0.4	0	0	0.62
19	F. verticelloides	100	0.5	0	0	0.82
20	F. verticelloides	100	0.4	66.6	6	0.55
21	F. culmorum	100	0.7	100	100	3.87

Table 2. Aggressiveness and disease incidence of Fusarium *spp* testing for CR and FHB assay on seedling wheat

References

- Al-Mousa, A.A. (2006). Response of same wheat pathogenic fungi to chemical and biological control. Thesis in King Saud University, College of Science, Botany and Microbiology Dept.
- Ansari, K.I., Walter, S., Brennan, J.M., Lemmens, M., Kessans, S., McGahern, A., Egan, D. and Doohan, F.M. (2007). Retrotransposon and gene activation in wheat in response to mycotoxigenic and nonmycotoxigenic- associated Fusarium stress. TheorAppl Genet. 114: 927–937.

- Bakan, B., C. Giraud-Delville, L. Pinson, D. Richard-Molard, E. Fournier and Y. Brygoo. (2012). Identification by PCR of *Fusarium culmorum* Strains Producing Large and Small Amounts of Deoxynivalenol. Appl. Environ. Microbiol. 68 (11): 5472-5479.
- Bottalico, A. and Giancarlo, P. (2002). Toxigenic Fusarium species and Mycotoxins Associated with Head Blight in Small-Grain Cereals in Europe. European Journal of Plant Pathology 108(7): 611-624.
- Brennan, J.P. and Murray, G.M. (1998). Economic Importance of Wheat Diseases in Australia.WaggaWagga, Australia: NSW Agriculture.
- Chulze, S.N, Ramirez, M.L., Farnochi, M.C., Pascale, M., Visconti, A. and March, G. (1996). Fusarium and fumonisin occurrence in Argentinian corn at different ear maturity stages, Journal of Agricultural Food Chemistry 44: 2797–801.
- Cossette, F. and Miller, D. (1995). Phytotoxic effect of Deoxyn'nralenol and Gibberella Ear Rot Resistance of Corn. Natural Toxins 3: 383-388.
- Dubin, H.J., Gilchrist, L., Reeves, A.F. and McNabA (Eds). (1997). Fusarium head scab: global status and prospects. (Centro International de Mejoramiento de MaizyTrigo (CIMMYT): Mexico).
- Goswami, R.S. and Kistler, H.C. (2004). Heading for disaster: *Fusarium graminearum* on cereal crops.Molecular Plant Pathology 55: 15–25.
- Klein, T.A., Liddell, C.M., Burgess, L.W. and Ellison, F.W. (1985). Glasshouse testing for tolerance of wheat to crown rot caused by *Fusarium graminearum* Group 1. In: Parker CA, Rovira AD, Moore KJ, Wong PTW, eds. Ecology and Management of Soilborne Plant Pathogens. St Paul, MN, USA: APS Press, p. 167–168.
- Lemmens, M., Scholz, U., Berthiller, F., Dall'Asta C., Koutnik, A., Schuhmacher, R., Adam, G., Buerstmayr, H., Mesterházy, Á., Krska, R. and Ruckenbauer, P. (2005). The ability to detoxify the mycotoxindeoxynivalenolcolocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant-Microbe Interact 18(12):1318–1324.
- Manning, B., Southwell, R., Hayman, P. and Moore, K. (2000). Fusarium head blight in north NSW, NSW Agriculture Research Update, New South Wales.
- McMullen, M., Jones, R. and Gallenberg, D. (1997). Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease 81: 1340–448.
- Menke-Milczarek, I. and Zimny, J. (1991). Phytotoxicity of Deoxynivalenol to wheat calli. Mycotoxin Research. 7(2):146-149.
- Miller, J.D. and Ewen, M.A. (1997). Toxic effects of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars frontana and casavant. Nat Toxins 5: 234–237.
- Mohammad, M.A. and Fadl-Allah, E.M. (2008). Molecular cytological effect of and deoxynivalenol mycotoxin (DON) in *Triticum vulgaris* using RAPD-PCR analysis. Chromosomal Botany 3: 31-39.
- O'Donnell, K., Kistler, H.C., Tacke, B.K. and Casper, H.H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of *Fusarium graminearum*, the fungus causing wheat scab. Proceedings of the National Academy of Sciences, USA 97: 7905–7910.
- Rocha, O., Ansari, K., and Doohan, F.M. (2005). Effects of trichothecenemycotoxins on eukaryotic cells: a review. Food Addit Contam 22(4): 369–378.
- Walter, S. and Doohan, F. (2011). Transcript profiling of the phytotoxic response of wheat to the Fusarium mycotoxin deoxynivalenol. Mycotox Res. 27: 221–230.

(Published in September 2012)